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Abstract 

Using Poincare coordinates we show that any relative amplitude and 

phase between the two modes of a directional coupler can be obtained 

through varying a single electrode voltage and by selecting the correct 

length for the coupling region.     Alternatively, curved waveguide sections 

can be employed to accomplish the same feat without applied voltage, 

which   we  demonstrate  using  beam propagation  simulations. 
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De biased, integrated optic,  linearized directional coupler optical 

modulators   have  been  extensively   studied1.    They suffer from the 

deficiencies that a large dc bias voltage with tight control is required in 

order  to  maintain  approximately  linear  operation,  and  the devices  are 

subject to dc drift2 due to large fields and low-mobility ionic conductivity. 

We will describe a new method to reach any arbitrary operating 

point for integrated optical devices that use dc bias voltages.    This 

technique  will  greatly reduce  the  magnitude  or completely  eliminate  the 

need for dc bias voltages.    The technique may generally be described as 

the  use of waveguide bends of controlled  length  and curvature that 

passively   bias   the  modulator  into  another  operating  regime. 

The propagation and coupling of optical modes in directional couplers 

can  be represented  on a Poincare sphere3.    We will use the symmetric and 

antisymmetric  supermodes  of the  directional  coupler.     The equations 

governing the evolution of the complex mode amplitudes in a lossless 

directional  coupler  are4 

as(z) = eJßav ^s0 cos(bz) + j sin(bz) (^ + *2&j 

aa(z) = eißav *L cos(bz) - j sin(bz) N& - **f 

(1) 

where ßs and ßa are the propagation constants, Aß=ßs-ßa, %=X(V)   is a 

function of the applied voltage, b=((Aß/2)2 +X2)1/2 and ßav=(ßs+ßa)/2. 

as(aa) is the complex amplitude of the symmetric  (antisymmetric) mode. 

For a passive, lossless directional coupler, as(z)=as0ei(ßsz+(t)0) and 

aa(z)=aa0e^az, where as0 and aa0 are real, and <|>0 is the phase difference at 

z=0 which may be nonzero due to the taper region.    We assume adiabatic 
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mode conversion in the taper regions for the remainder of this paper; this 

does not qualitatively change the results.     The Poincare coordinates3 are 

defined   by 

Si=   las|2-laa|2       = Ps-Pa = cos(0) 

S2= 2lasaalcos(<t>) =        cos((|>)sin(e) (2) 

S3= 2lasaalsin((|))   =        sin((|>)sin(e) 

where 0 is the phase difference between the modes, Ps(a) is the power in 

the  symmetric  (antisymmetric)  mode  and   {6,<|>}   are standard  spherical 

angular coordinates  (Fig.   la). 

For a two-guide directional coupler we may calculate the power in 

each of the two waveguides at the end of the coupling region (z>L) as 

r^ 1 I .9 1   + S O pi = 2ias+M2 = -T^ (3a) 
p   _l|fl     n |2_1'S2 
^2-2ias-aa| —. (3b) 

For % = 0, the output state {Sl5S2,S3} as a function of L lies on the 

equator circle Si=0.   Only on this circle is lasl=laal.  P! may vary from 0 to 1 

while on the equator.    However, for some devices such as linear 

modulators it is necessary to operate off the equator1.   In order to vary Si, 

we need to introduce  asymmetry  to couple the symmetric  and 

antisymmetric modes.    This can be done using an electrooptic or other 

material whose index varies with an external influence.    We will now 

analyze how to select any point on the sphere as the output state of the 

directional   coupler. 
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The spherical notation defined in Eq. (2) will be used, where 

<t>=Arg(as/aa), 0<<})<27r, and e=Cos-1(Ps-PaX 0<9< JC.   With aso=aao=l/V2 and 

<|)0=0, solving for 6 using Eq. (1) results in 

cos(6) = (x^Ösin^bL). (4) 

For X=0, cos(0)=O as expected.    cos(9) can cover the entire -1 to +1 range, 

and cos(0)=±l only when AßL=mji/V2 (for m odd integer) and XL=±AßL/2. 

The phase difference § at z=L is obtained from Eq. (1) as 

0= tair^KAß^+Xtyb)}  tan(bL)] + tairl[{(W/2-X)/b)}  tan(bL)].      (5) 

For X=0, <j)=AßL, while in the limit of large X, $=0.   Any point {0,<t>} on the 

Poincare sphere can be selected by varying AßL and X, as we will show 

below.   L and Aß can be chosen i independently by the device designer. 

Alternatively, the evolution of the Poincare coordinates as  a function 

of L and X is given by, 

"Aß JL o "^ß   2L   o " 
2b b   u 

r 1 2b     b    U 
t-             -n 

Si 
s2 

_ X 
b 

ÄE. o 
2b 

1 
0 

0            0 
cos(2bL) -sin(2bL) 

b     2b 

S10 
S20 

s3 0 sin(2bL) cos(2bL) .S30. 
0 0     1 0     0     1 

(6) 

where  Sio=Si(z=0).    This shows that points on the sphere are reached 

through successive rotations about the S3, Si, and S3 axes.   With 

{Sio,S20,S3o} ={0,1,0}, Eq. (6) reduces to 
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Si, S2, S3} = { 2£^| (1 - cos(2bL)), (|) + (^-j cos(2bL),   (^) sin(2bL) }     (?) 
2b 

We find from Eq.'s (3a) and (7) that 

■.■'-es1 sin2(bL) . (8) 

From Eq. 8 we see that dPi/d% = 0 when %=0, which is why a bias 

point with %*0 is necessary for a linear modulator.    Let us now examine the 

power Pi for AßL=7r.   When X=0, Pi=0 as expected.   Pi reaches its maximum 

of one when bL=m7C, m integer.    Thus by varying X> Pi can be set to any 

desired value between 0 and 1.    For 2X/Aß=0.8, Pi=0.5 and the slope of Pi 

versus X is approximately linear, a good operating point for a linear 

modulator.    Then {Si, S2, S3} = {0.8,0,-0.6} which is indicated by the * in Fig. 

la. 

Another representation for evolution of the output state {Si, 82,83} is 

shown in Fig. 2.    The starting points are all on the rim of the circle where 

X=0.   As X grows large the trajectory is an ever tightening spiral about an 

axis which approaches the S3 axis. 

With {Sio,S2o,S3o} ={0,1,0}, Eq. (7)   may be solved for the X and L 

needed to reach the output state {Si,S2,S3}. 

L= /    ,.  >2Sin IM/' + lTTibl I do) 
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This shows explicitly how any point on the Poincare sphere can be reached 

by a suitable choice of % and L. 

As shown above, setting the operating point of a symmetric 

directional coupler device off the equator requires a nonzero X.   We will 

now describe a method to reach any point on the Poincare sphere with 

little or no dc bias, by using a waveguide configuration which breaks the 

symmetry along  x, thus providing coupling between  the  symmetric and 

antisymmetric   modes. 

The technique may generally be described as the use of waveguide 

bends of controlled length  and curvature to passively bias  the modulator. 

Figure 3 inset shows the waveguide design with sine bends for low loss5 as 

defined   by 

=h(u-srsin(2 i x(z) = hlrr-^Fsin|2^j, (n) 

where {x,z}= {0,0} is at the inflection point of the individual waveguide 

bends and Lb and h are defined in the Fig. 3 inset. 

The  beam  propagation  method6'7 was used to simulate mode 

propagation, with light starting in waveguide 1.    Figure 3  shows how 

Si=cos(0) varies with the bias section length Lb.    The graphs are flipped 

about the Si=0 axis when the direction of the bend is up instead of down. 

It may be that the limiting values for Si of ±1  are not achievable using this 

technique.    For example, in the case of h=50 u.m and Lb=2760 u.m, we find 

Si =-0.996, (or +0.996 for the up bend case).    For practical devices this 

range  should be more than  adequate. 
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Once the bias section ends, the phase difference <|>t between  the two 

modes may not be the desired value Hias-    A symmetric section of parallel 

waveguides   with   length 

L<|>=    Wbias-M/(ßs-ßa),       4>bias>4>t (12) 

(<t>bias+ 27C-<t>t) /(ßs-ßa),  <l>bias«i>t 

changes   $ to the necessary value.    This demonstrates that almost any bias 

point on the Poincare sphere can be reached with only passive waveguide 

design.    Any displacement in the actual bias point {6,<|>} from the design 

point due to fabrication variations can be corrected with a small dc bias 

voltage in the L$ section. 

We have shown how a dc bias voltage and careful selection of the 

device length on an electrooptic directional coupler can set the operating 

point of the device anywhere on the Poincare sphere.    We have also shown 

that this can be accomplished through the use of geometrical waveguide 

design with zero, or a greatly reduced bias voltage.    This relieves the 

requirement for large dc bias  voltages  and their attendant problems  in 

electrooptic   devices. 
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Figur? Captions 

Figure 1.    (a) Definition of Poincare coordinates,    (b) Geometry of coupler. 

Figure 2.    Trajectories on the Poincare sphere as a function of XL (from 

0-10) projected onto the S2-S3 plane.    Various ÄßL values are indicated. 

The circle represents possible states when X = 0.   The lower axis 

represents  the power Pi  in waveguide 1. 

Figure 3. Si  vs. transition length for the passively biased waveguides 

shown in the inset. The parameters used are: n = 1.5, An = 0.005, G = 5.1 

(im,   TE mode,   X = 1.3 p, h = 50 (im and h = 75 (im. 
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{0.8,0,-0.6}*. 

'X=0, AßL=7c 

X=0, L increasing 

z=0 z=L 

Figure 1. (a) Definition of Poincare sphere parameters, (b) Geometry 
of coupler. 
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Figure 2. Projection of trajectories on Poincare sphere to the S2-S3 plane as 
% increases from 0-10. Shown for various AßL values as indicated. The circle 
is % = 0. Also shown is an axis for P. . 
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Figure 3. Plot of Sj versus transition length. The parameters used 
are: n = 1.5, An = 0.005, G = 5.1 um, TE mode, X = 1.3 pm, h = 50 
|jm and h = 75 urn. Inset shows geometry. 
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